Asymptotic Analysis of Multiscale Approximations to Reaction Networks by Karen Ball,1 Thomas G. Kurtz,2 Lea Popovic
نویسندگان
چکیده
A reaction network is a chemical system involving multiple reactions and chemical species. Stochastic models of such networks treat the system as a continuous time Markov chain on the number of molecules of each species with reactions as possible transitions of the chain. In many cases of biological interest some of the chemical species in the network are present in much greater abundance than others and reaction rate constants can vary over several orders of magnitude. We consider approaches to approximation of such models that take the multiscale nature of the system into account. Our primary example is a model of a cell’s viral infection for which we apply a combination of averaging and law of large number arguments to show that the “slow” component of the model can be approximated by a deterministic equation and to characterize the asymptotic distribution of the “fast” components. The main goal is to illustrate techniques that can be used to reduce the dimensionality of much more complex models.
منابع مشابه
Probability ASYMPTOTIC ANALYSIS OF MULTISCALE APPROXIMATIONS TO REACTION NETWORKS
A reaction network is a chemical system involving multiple reactions and chemical species. Stochastic models of such networks treat the system as a continuous time Markov chain on the number of molecules of each species with reactions as possible transitions of the chain. In many cases of biological interest some of the chemical species in the network are present in much greater abundance than ...
متن کاملJu l 2 00 5 Asymptotic analysis of multiscale approximations to reaction networks ∗
A reaction network is a chemical system involving multiple reactions and chemical species. Stochastic models of such networks treat the system as a continuous time Markov chain on the number of molecules of each species with reactions as possible transitions of the chain. In many cases of biological interest some of the chemical species in the network are present in much greater abundance than ...
متن کاملCentral limit theorems and diffusion approximations for multiscale Markov chain models
Ordinary differential equations obtained as limits of Markov processes appear in many settings. They may arise by scaling large systems, or by averaging rapidly fluctuating systems, or in systems involving multiple time-scales, by a combination of the two. Motivated by models with multiple time-scales arising in systems biology, we present a general approach to proving a central limit theorem c...
متن کاملAsymptotic analysis of multiscale approximations to reaction networks
A reaction network is a chemical system involving multiple reactions and chemical species. Stochastic models of such networks treat the system as a continuous time Markov chain on the number of molecules of each species with reactions as possible transitions of the chain. In many cases of biological interest some of the chemical species in the network are present in much greater abundance than ...
متن کاملSeparation of Time-scales and Model Reduction for Stochastic Reaction Networks1 by Hye-won Kang
A stochastic model for a chemical reaction network is embedded in a one-parameter family of models with species numbers and rate constants scaled by powers of the parameter. A systematic approach is developed for determining appropriate choices of the exponents that can be applied to large complex networks. When the scaling implies subnetworks have different time-scales, the subnetworks can be ...
متن کامل